
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 38, NO. 15, AUGUST 1, 2020 3935

High-Speed Post-Processing in Continuous-Variable
Quantum Key Distribution Based on

FPGA Implementation
Shen-Shen Yang , Zhen-Guo Lu, and Yong-Min Li

Abstract—In a continuous-variable quantum key distribution
(CV-QKD) system, the computation speed of the post-processing
procedure, including information reconciliation (IR) and privacy
amplification (PA), inevitably affects the practical secret key rate.
IR and PA can be implemented in parallel using low-density parity-
check (LDPC) codes and hash functions, respectively. We achieve
high-speed hardware-accelerated post-processing procedure for
Gaussian symbols on a field-programmable gate array (FPGA) by
taking advantage of its superior parallel processing ability. To this
end, the sum-product algorithm decoders and a modified LDPC
codes construction algorithm adapted to FPGA’s characteristics
are developed and employed. Two different structures including
multiplexing and non-multiplexing are designed to achieve the
trade-off between the speed and area of FPGAs, so that an op-
timal scheme can be adopted according to the requirement of
a practical system. Simulation results show that the maximum
throughput can reach 100 M symbols/s. We verified the correctness
of the post-processing procedures when implemented on the Xilinx
VC709 evaluation board, which is populated with the Virtex-7
XC7VX690T FPGA and provided some possible solutions to obtain
better performance when more advanced FPGAs are available. The
scheme can be applied readily for real-time key extraction and
effectively reduce power consumption of the CV-QKD system.

Index Terms—Continuous-variable quantum key distribution
(CV-QKD), FPGA, post-processing, real-time.

I. INTRODUCTION

IN QUANTUM key distribution (QKD) [1]–[6], Alice sends
quantum states in which keys are encoded to Bob through

a quantum channel, and Bob measures the received states with
random bases. Then, a secret key secure in the information-
theoretic sense can be extracted and shared between Alice and
Bob. A QKD system typically includes three steps: (1) quantum

Manuscript received January 16, 2020; revised February 28, 2020 and March
29, 2020; accepted March 30, 2020. Date of publication April 6, 2020; date of
current version July 23, 2020. This work was supported in part by the National
Key R&D Program of China under Grant 2016YFA0301403, in part by the
National Natural Science Foundation of China (NSFC) under Grant 11774209
and Grant 61378010, in part by the Key R&D Project of Shanxi Province
under Grant 201803D121065, and in part by the Shanxi under Grant 1331KSC.
(Corresponding author: Yong-Min Li.)

The authors are with the State Key Laboratory of Quantum Optics and
Quantum Optics Devices, Institute of Opto-Electronics, Collaborative Inno-
vation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
(e-mail: 201612607013@email.sxu.edu.cn; 201812607010@email.sxu.edu.cn;
yongmin@sxu.edu.cn).

Color versions of one or more of the figures in this article are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JLT.2020.2985408

state preparation, distribution, and measurement; (2) data sifting
and parameter estimation; and (3) post-processing procedure.
The last can be divided into two main parts, information recon-
ciliation (IR), in which Alice and Bob use error correction codes
(ECCs) to correct errors in sifted keys to obtain identical cor-
rected keys, and privacy amplification (PA), which eliminates the
leaked information by using universal classes of hash functions
to map long-corrected keys to shorter secure keys.

There are three types of QKD protocols [2]: discrete-variable
QKD (DV-QKD), continuous-variable QKD (CV-QKD) [3]–
[5], and distributed phase reference QKD (DPR-QKD) [7].
CV-QKD has attracted much attention in recent years, mainly
because its information is encoded in the amplitude and phase
quadratures of quantum states so that high-sensitive low-noise
heterodyne or homodyne detection techniques can be employed.
It also has potential higher secret key rates over metropolitan
areas. However, the IR procedure in CV-QKD systems is rela-
tively sophisticated since it works in low signal-to-noise ratio
(SNR) conditions. With the progress of experimental research
[8]–[11], the system’s repetition rate is becoming increasingly
higher, and the data throughput of the post-processing procedure
must be fast enough; otherwise, it will reduce the actual key rate.

Several schemes have been proposed for IR of Gaussian sym-
bols, such as slice reconciliation [12]–[15], multidimensional
reconciliation [16]–[18], and other schemes [19], [20], which
are applicable to a certain range of SNRs. As shown in Fig. 1,
the slice reconciliation can obtain a higher secret key rate in
the case of shorter distance and larger SNR (from 1 to 15),
while multidimensional reconciliation, usually combined with
multi-edge type low-density parity-check (LDPC) codes [17],
[21], [22] or Raptor codes [23], [24], is optimal for a smaller
SNR from 0.01 to 1 and is limited to 1 bit per pulse. For IR in
CV-QKD, very large block ECCs are usually required to achieve
high reconciliation efficiency on the additive white Gaussian
noise channel (AWGNC). Because of the large block codes
and many iterations required in IR, the throughputs of the error
correction algorithms is very limited on a central processing unit
(CPU). One feasible way to improve the throughput is to exploit
hardware-based acceleration. Based on graphics processing unit
(GPU), a throughput of 9.17 Mb/s is obtained for multidimen-
sional reconciliation [22]. This record is further improved to
30.39 Mb/s [25] (also based on a GPU). Currently, high-speed
slice reconciliation based on hardware acceleration has not been
achieved.

0733-8724 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanxi University. Downloaded on July 23,2020 at 00:13:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2351-6603
https://orcid.org/0000-0003-0228-7693
mailto:201612607013@email.sxu.edu.cn
mailto:201812607010@email.sxu.edu.cn
mailto:yongmin@sxu.edu.cn
http://ieeexplore.ieee.org

3936 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 38, NO. 15, AUGUST 1, 2020

Fig. 1. Performance of slice reconciliation vs multidimensional reconciliation
with the same reconciliation efficiency β = 95%. Other parameters are excess
noise ξ = 0.01, efficiency of receiver’s detector η = 0.64, electronic noise at
Bob’s side Vel = 0.1.

Field-programmable gate arrays (FPGAs) are very attractive
when designing prototypes [26]–[29] and manufacturing small-
production-run devices, and their in-system programmability
makes them substantially cost-effective. In addition, FPGAs
are good at binary operations and can configure the degree
of parallelism more flexibly, so that it facilitates control over
the trade-off between data throughput and hardware resource
requirements. Furthermore, the power consumption of an FPGA
is much lower than that of a GPU and other hardware.

In this work, we achieve a high-speed post-processing pro-
cedure based on FPGA hardware acceleration. To this end, the
sum-product algorithm decoders and a modified LDPC codes
construction algorithm adapted to FPGA characteristics are
developed and employed. Two different structures, including
multiplexing and non-multiplexing, are designed to achieve
the trade-off between the area and speed of FPGAs, so that
one can adopt optimal schemes according to the requirements
of a practical system. By implementing multiple code words
decoding simultaneously, the throughput of slice reconciliation
can reach 100 M symbols/s on a Xilinx Virtex-7 FPGA. Finally,
we integrate IR and PA [30] to realize a complete real-time
post-processing procedure.

The rest of this paper is organized as follows. In Section II,
we briefly review the post-processing procedure in a CV-QKD
system. Then, we present the two different structures of the
post-processing procedure and the design of LDPC decoders in
Section III. In Section IV, we present detailed implementation
results for the post-processing procedure on FPGA. In Section V,
we give a brief summary and discussion.

II. POST-PROCESSING IN CV-QKD

Fig. 2 shows a typical structure of the post-processing pro-
cedure with reverse slice reconciliation and PA in CV-QKD
systems. In the IR part, LDPC codes are employed to achieve

Fig. 2. Schematic of the post-processing with slice reconciliation and PA in
the CV-QKD system. {Bi} are the levels corresponding to the less significant
bits, and {Si} are the syndromes of the significant bits calculated according to
the parity-check matrix of LDPC codes.

Fig. 3. Slice reconciliation based on five levels of encoding and decod-
ing. RawKeyX and Y are correlated Gaussian symbols obtained after base
sifting in a CV-QKD system. Quantizer is used to quantize the Gaussian
symbols Y and obtain five bit strings L1, L2, L3, L4, and L5; S4 and S5 are
syndromes generated by LDPC encoding modules Encoder of levels 4 and
5, respectively; L′

4 and L′
5 are corrected secret keys output from the LDPC

decoding modules Decoder of levels 4 and 5.

high-speed and high-efficiency IR. The PA is implemented by
the Toeplitz matrix, which is a special universal hash function.

A. Slice Reconciliation Protocol

Slice reconciliation [12]–[15] is an error correction scheme
for Gaussian symbols using binary error correcting codes. It
works in different ways on both parties; see Fig. 3 for a schematic

Authorized licensed use limited to: Shanxi University. Downloaded on July 23,2020 at 00:13:33 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: HIGH-SPEED POST-PROCESSING IN CONTINUOUS-VARIABLE QUANTUM KEY DISTRIBUTION 3937

description of the slice reconciliation. For reverse slice recon-
ciliation, Bob uses the quantizing function Q : R → {0, 1}m to
transform each continuous Gaussian variable Yi into an m-bit
label {Bj(Yi)}, j = 1, ...,m. Next, Bob uses multilevel coding
(MLC) by encoding each individual level j of label bits inde-
pendently as the syndrome of an error correcting code with rate
Rj(1 ≤ j ≤ m). To recover Bob’s m-bit label {Bj}, the sender
Alice employs multistage decoding (MSD) using its own source
X as side information. Finally, the two parties share identical
corrected keys.

In our scheme, raw key Y are quantified to five levels. The
information included in the first three levels is very small and
disclosed directly, and the latter two levels are encoded and suc-
cessively decoded. More precisely, Bob must send the quantized
bit strings {B1(Yi)}, {B2(Yi)}, and {B3(Yi)} of the first three
levels and the syndromesS4 andS5 of the last two levels to Alice.
For simplicity, hereafter we use L1, L2, and L3 to represent
{B1(Yi)}, {B2(Yi)}, and {B3(Yi)}.

The efficiency β of the slice reconciliation is given by

β =
H [Q(Y)]−m+

∑m
i=1 Ri

I (X;Y)
, (1)

where Q(Y) is the discrete symbol by quantizing Y , H[Q(Y)]
is the information entropy of Q(Y), and I(X;Y) is the mutual
information between Alice and Bob.

B. Standard LDPC Codes

LDPC codes [31] is a good performance error correction code
and can be used to achieve high-efficiency IR very close to
the Shannon limit. The performance of LDPC decoders greatly
affects the reconciliation efficiency in CV-QKD. To implement
LDPC decoders based on hardware, the approaches of each step
should be carefully designed to achieve the best performance,
including decoding algorithms, message propagation schedule,
construction of check matrix, and so on.

1) Decoding Algorithms: LDPC codes are usually decoded
using a belief propagation (BP) algorithm, in which messages
typically in the form of a logarithmic-likelihood ratio (LLR) are
iteratively passed in both directions along the edges between
connected nodes.

The two most dominating LDPC decoding algorithms are
the sum-product algorithm (SPA) and the min-sum algorithm
(MSA). Note that two modifications of the MSA, called the
normalized MSA and offset MSA [32], have been proposed to
improve performance. Although MSAs are easy to implement
on FPGA, the highest reconciliation efficiency in our test that
can be achieved is less than 90%. Therefore, the SPA is chosen
in our design.

2) Message Propagation Schedule [33]: The schedule of the
LDPC decoding process determines the order in which variable
nodes and check nodes are processed, as well as whether mul-
tiple nodes are processed in parallel. Flooding, layered belief
propagation (LBP) [34], and informed dynamic scheduling are
three widely used schedules. LBP tends to converge to the
correct code word with fewer iterations and therefore has lower
computational complexity, and the memory size required for a

LBP decoder is half of that required for a flooding decoder. In
consideration of these features, the LBP schedule is adopted in
our scheme.

3) Construction of Parity Check Matrix (PCM): In addition
to the size of matrix block and the degree distributions of its
nodes, the position of the edges also has a significant impact on
error correction performance. A number of techniques have been
proposed, such as random construction, the progressive edge
growth (PEG) algorithm, and quasi-cyclic (QC) codes. Previous
work showed that the PEG algorithm has better performance at
SNR∼ 3 [14], while random construction exhibits better perfor-
mance at SNR ∼ 1 [15]. QC codes are defined by a parity-check
matrix constructed from an array of q × q cyclically shifted
identity matrices or q × q zero matrices. QC codes impose a
highly regular parity-check matrix structure with a sufficient
degree of randomness offset to achieve near-Shannon-limit er-
ror correction performance while reducing the implementation
complexity of the decoder. QC codes also reduce data permu-
tation and memory access complexity by eliminating random,
unordered memory access patterns.

In the proposed scheme, a small base matrix is first con-
structed using the PEG algorithm or random construction, de-
pending on the specific SNRs, and a large block matrix is succes-
sively obtained by quasi-cyclic expansion. When implementing
the LDPC decoders based on FPGA, there are inevitably some
clock delays between the writing and reading of LLR data
during the calculating procedure. To use the pipeline structure
to improve the throughput, the structure of the matrix must have
enough interval between the two nodes in the same column to
avoid read-write conflicts.

C. Practical Secret Key Rate

Accounting for the finite-size effects [35], the secret key
rate of a reverse reconciliation CV-QKD system is given by
Kfinite = (n/N)(βIAB − χBE −Δ(n)), wheren is the num-
ber of data used to distill the secret key,N is the number of sifted
data after quantum transmission and measurement, N − n is the
number of data used for parameter estimation, IAB is the mutual
information between Alice and Bob, χBE is the Holevo bound,
and Δ(n) is the finite-size offset factor.

In the above, the secret key rate is derived without consider-
ing the actual throughput of the post-processing procedure; in
other words, we assume that the post-processing procedure is
real-time. In a practical QKD system, the computation time of
the post-processing procedure is limited. More precisely, the
practical key rate is affected by a factor α = PP out/PP in,
wherePP in andPP out represent the post-processing input and
output rates, respectively [36]. In general, we have 0 < α ≤ 1.
Furthermore, raw key blocks incorrectly decoded in a QKD
system are usually simply discarded by the sender and receiver.
As a result, the final key rate are also affected by the frame error
rate (FER) of the LDPC decoder.

Taking into account all the previous factors in the CV-QKD
system, the practical secret key rate is given by

Kprac = α (1− FER)
(n

N

)
(βIAB − χBE −Δ(n)) . (2)

Authorized licensed use limited to: Shanxi University. Downloaded on July 23,2020 at 00:13:33 UTC from IEEE Xplore. Restrictions apply.

3938 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 38, NO. 15, AUGUST 1, 2020

Fig. 4. (a) Fully pipelined non-multiplexed structure and (b) two-level multiplexing structures in IR. LLR_ini_4 and LLR_ini_5 modules are used to generate
the initial LLR data of levels 4 and 5 before iterative decoding, respectively. Decoder_4 and Decoder_5 modules in (a) are FPGA-based LDPC decoders in levels
4 and 5, respectively. Decoder module in (b) is multiplexed in two levels. Key_Manager module is used to store the corrected secret keys and manage their
inputs and outputs.

III. DESIGN AND IMPLEMENTATION

In this section, we will describe the details of how to achieve
the post-processing procedure on FPGA. FPGAs have the advan-
tage of parallel computing and low power consumption, but its
hardware resources are limited, particularly the block memory
and logic gates (LUTs). Therefore, a crucial challenge is to
achieve the post-processing procedure using only the limited
hardware resources. Although the storage medium can employ
an external DDR, the access rate of a DDR usually cannot meet
the high-speed requirements, which is necessary for high-speed
LDPC codes decoding.

The schematic of the logic structure of the post-processing
procedure is shown in Fig. 2. It consists of several main modules,
i.e., a multilevel encoder, multistage decoder, privacy amplifica-
tion, and classic communication through classical channels. The
implementation of multilevel encoders on an FPGA is relatively
simple. First, the Gaussian symbols are quantized, and then
matrix multiplication is performed to calculate the syndromes.
The multilevel encoders consume very little hardware resources
and can provide high throughput.

A. Implementation of the Multistage Decoder

The implementation of a multistage decoder on an FPGA is
complex and consumes more hardware resources. To decrease
the consumption of hardware resources, two approaches are
adopted: 1) using short-code-length LDPC codes, and 2) using
as few bits as possible to represent the natural number during
the calculation. When the SNR is relatively high, for example,
SNR ∼ 3, the code length is short. In this case, to improve the
throughput, we create two or more decoders on an FPGA, and
each decoder performs the fourth- and fifth-level decoding in
parallel. Fig. 4(a) shows the fully pipelined non-multiplexed

Fig. 5. Logic structure of LDPC decoders. Green blocks are memory modules,
and pink blocks are calculation modules. The five memories store the parity
check matrix, LLRs, syndromes, node messages, and secret key, respectively.

structure in levels 4 and 5 using two independent decoders,
Decoder_4 and Decoder_5, which can have different parallel
parameters.

When the SNR is low, for example, SNR∼ 1, the consumption
of the hardware resources is high due to long code length. To
address this issue, we propose a multiplexing method. Owing to
the high architectural consistency, there are minor differences
between the two LLR initialization modules of levels 4 and 5.
Considering that the required hardware resources are small, we
create two LLR modules and operate them in parallel. Note
that in this structure, the quasi-cyclic extension parameters of
the two-level check matrix must be the same. Fig. 4(b) shows
the structure of two-level multiplexing decoding in the IR part.
In the multiplexing structure, not only are the LUTs resources
reused, more importantly, the very limited storage resources can
be reused as well.

Fig. 5 shows the logic structure of the LDPC decoder. After
the LLR message is initialized, it is written into LLR_MEM ,

Authorized licensed use limited to: Shanxi University. Downloaded on July 23,2020 at 00:13:33 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: HIGH-SPEED POST-PROCESSING IN CONTINUOUS-VARIABLE QUANTUM KEY DISTRIBUTION 3939

which is true dual port RAM. The Mes_Cal module cal-
culates the messages of each node and updates LLR data.
After completing the decoding process, the Decision mod-
ule determines whether the decoding is successful. If the
decoding is successful, the corrected key is generated by
the Gen_Key module; otherwise, the iterative operation is
performed again. In the LDPC decoder, all data are calcu-
lated in parallel using fixed-point numbers to save memory
resources.

B. Integration of IR and PA

For PA, we designed the Rhomboid-Block Operation algo-
rithm, which consists of parallel multiply-accumulator units, in
which each unit performs multiple single-bit multiplication. We
can exert control over the trade-off between throughput and hard-
ware resource consumption by choosing a reasonable parallel
parameter. For a more detailed description of the FPGA-based
PA algorithm, please refer to [30].

When integrating IR and PA, one of the key points is that the
processing speeds of these two parts must match each other
to avoid wasting limited hardware resources. Owing to the
simplicity of the PA algorithm, its throughput can be much
higher than that of the IR algorithm. Therefore, the throughput of
the PA algorithm can be adjusted according to the throughput of
IR. In addition, the corrected key is stored in theKey_Manager
module in Fig. 4. We can easily read the keys from this module
if the parallel parameter of PA are consistent with IR; otherwise,
the storage format of the key must be transformed.

C. Throughput

In a continuously running CV-QKD system, the throughput
of the entire post-processing procedure depends on the slowest
sub-procedure when a non-multiplexed structure is used. In our
case, it is the LDPC decoder. Its throughput can be estimated by

TLDPC ≈ f · q
(1−R) ·Nnode ·Niter

, (3)

where f is the clock frequency of FPGAs, q is the quasi-cyclic
parameter, R is the code rate of the LDPC codes, Nnode is the
average number of nodes in each row of a basic matrix, and
Niter is the average number of iterations to execute a decoding
algorithm. As shown in (3), the throughput increases linearly
with increasing FPGA’s clock frequency and quasi-cyclic pa-
rameter q. Therefore, these two parameters should be as large as
possible.

To derive (3), we assume that all the clocks are occupied
by the algorithm. Note that when running the post-processing
procedure on an FPGA, some additional clocks are needed for
the purposes of control, delay, etc. However, the portion of these
additional clocks is negligible, and the actual throughput is very
close to the estimated result obtained by (3), which is useful in
estimating the throughput in advance when designing a scheme.

The throughput of the multiplexed structure is equal to half
the average throughput of the two decoders.

Fig. 6. Secret key rate with reconciliation efficiencies of 93% and 95%. Other
parameters are excess noise ξ = 0.01, electronic noiseVel = 0.1, and efficiency
of receiver’s detector η = 0.64.

IV. RESULTS

In this section, we summarize the implementation results
of the proposed scheme. Our main goal is to achieve high
throughput post-processing procedure using the FPGA’s limited
hardware resources. According to the above theoretical analysis,
the larger the parallel parameter, the greater the throughput,
but it also requires more hardware resources. To determine
the parallel parameter PLDPC of LDPC decoders and PPA of
PA, the effects of the speed and area on the design must be
investigated. In Table I, we present the design space exploration
of LDPC decoders and PA under different parameters. Note
that the simulation results are consistent with the theoretical
analysis. The throughputs of LDPC decoders and PA increase
linearly with the increase of their parallel parameters. The larger
the throughput, the more LUTs must be consumed, but the
storage resources will not increase. From [30], we know that the
throughput of PA decreases linearly with the increasing block
size when the other parameters remains constant. Based on these
results, we can choose the optimal parameters to avoid wasting
hardware resources in a practical CV-QKD system.

Table II presents the detailed parameters of the performance of
IR and post-processing based on a CPU or FPGA. We present the
performance for two typical SNR values, 1 and 3. The correlated
raw keys X and Y are generated using C language and down-
loaded to FPGA. It is known that LDPC codes will achieve better
performance if a longer block length is used. In [15], we achieved
information reconciliation with 95% efficiency by using LDPC
codes with a block length of 106. However, it is a challenge
to implement the LDPC decoder with a very large code length
based on FPGA because the storage resources of an FPGA are
limited. After careful evaluation, we chose two relatively short
block lengths. For SNR ∼ 1 and 3, the block lengths L of LDPC
codes for each level are 349,952 and 262,144, respectively.
For the calculation of the optimal code rates, please refer to
[15]. The practical rates presented in Table II are determined
after actual decoding tests. The length of syndromes S can be
calculated using the formula S = (1−R)L. In this case, the
reconciliation efficiency can reach 93% and the algorithm can
be implemented in state-of-the-art FPGAs. In Fig. 6, we compare

Authorized licensed use limited to: Shanxi University. Downloaded on July 23,2020 at 00:13:33 UTC from IEEE Xplore. Restrictions apply.

3940 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 38, NO. 15, AUGUST 1, 2020

TABLE I
DESIGN SPACE EXPLORATION

a Code rate is 0.98.
b Compression ratio (equal to the secret key rate of CV-QKD) is 0.1.

TABLE II
PERFORMANCE OF IR AND POST-PROCESSING BASED ON CPU AND FPGA

a Values on left-hand (right-hand) side of the symbol “/” belong to levels 4 and 5 in slice reconciliation, respectively.
b First two values belong to levels 4 and 5 in slice reconciliation, and the third value belongs to PA.

the impact of reduced reconciliation efficiency on key rate and
transmission distance. It can be found that the influence of the
reconciliation efficiency on the key rate is trivial when the excess
noise ξ = 0.01, electronic noise Vel = 0.01, and efficiency of
receiver’s detector η = 0.64.

From Table II, we note that more average iterations are re-
quired on FPGA, and the FER is also increased to some extent.
This is because FPGAs use fixed-point arithmetic to suppress
the hardware resource requirements, with the cost being that
it also sacrifices the accuracy of relevant calculations. If an
FPGA with larger storage resources is employed, a longer block
length LDPC decoder and more accurate fixed-point numbers
can be used, and the IR performance can reach that of a CPU
in principle. Although the FER and reconciliation efficiency
degrades to some extent, the throughput is improved by three
orders of magnitude. According to (2), the practical secret key
rate will be greatly boosted.

The latency of IR, including the latency of the two LLR initial-
izations and two LDPC decoders, is independent of whether mul-
tilevel multiplexing is used. The total latency per post-processing
procedure is the sum of the latencies of IR and PA. The FER is
affected by several factors, including the code lengths, the code
rates, and the accuracy of fixed-point numbers. It is crucial to
optimize all the relevant parameters to achieve the best overall
performance.

As mentioned earlier, the throughput of the entire post-
processing procedure or IR depends on the LDPC decoders, so
the value of non-multiplexing structure shown in Table II is equal
to the throughput of the LDPC decoders, while the value of mul-
tiplexing structure is equal to half the average throughput of the
two decoders. We use the Xilinx VC709 evaluation board, which
is populated with the Virtex-7 XC7VX690T FPGA with 433,200
LUTs and 866,400 flip-flops, as well as 52,920 kb BRAMs, to
implement the multiplexing structure and entire post-processing

Authorized licensed use limited to: Shanxi University. Downloaded on July 23,2020 at 00:13:33 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: HIGH-SPEED POST-PROCESSING IN CONTINUOUS-VARIABLE QUANTUM KEY DISTRIBUTION 3941

procedure at SNR = 3, and the throughput reaches 38.18 M
symbols/s. In this work, we choose the PA block size to be
consistent with that of the IR to facilitate testing. In order to
mitigate finite-size effects in an actual CV-QKD system, more
FPGA resources can be employed to implement the PA with
very large block size. We also give the simulation results of the
multiplexing structure with SNR = 1 and the non-multiplexing
structure with SNR= 3, which can be implemented on other FP-
GAs, such as the Virtex-7 XC7VX1140T with a total of 712,000
LUTs, 1,424,000 flip-flops, and 67,680 kb BRAMs [37].

V. DISCUSSION

In this work, we designed and demonstrated high-efficiency
post-processing procedure in CV-QKD based on a Xilinx Virtex-
7 FPGA. The hardware-accelerated post-processing algorithm
reaches throughputs of 100.90 M symbols/s and 14.83 M sym-
bols/s, which are the highest speeds at SNR = 3 and 1, respec-
tively, to the best of our knowledge. If better FPGAs are utilized,
such as the Xilinx Virtex UltraScale+ FPGA, the performance of
the current post-processing procedure can be improved further.
With the rapid advance of FPGA technology, available block
memory in chips will become larger, and, in this case, better
performance of the post-processing procedure can be expected.

At present, chip-based CV-QKD techniques are undergoing
rapid development [11], placing high demands on the integration
and power consumption of the post-processing module. Since
FPGAs are easy to integrate, and its power consumption is low, it
is a very promising secret key distillation engine for chip-based
CV-QKD systems.

REFERENCES

[1] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,”
Rev. Mod. Phys., vol. 74, no. 1, pp. 145–195, Jan. 2002.

[2] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütken-
haus, and M. Peev, “The security of practical quantum key distribution,”
Rev. Mod. Phys., vol. 81, no. 3, pp. 1301–1350, Sep. 2009.

[3] C. Weedbrook et al., “Gaussian quantum information,” Rev. Mod. Phys.,
vol. 84, no. 2, pp. 621–669, May 2012.

[4] E. Diamanti and A. Leverrier, “Distributing secret keys with quantum
continuous variables: Principle, security and implementations,” Entropy,
vol. 17, no. 9, pp. 6072–6092, Aug. 2015.

[5] Y.-M. Li, X.-Y. Wang, Z.-L. Bai, W.-Y. Liu, S.-S. Yang, and K.-C. Peng,
“Continuous variable quantum key distribution,” Chin. Phys. B, vol. 26,
no. 4, Apr. 2017, Art. no. 040303.

[6] S. Pirandola et al., “Advances in quantum cryptography,”, 2019,
arXiv:1906.01645.

[7] D. Bacco et al., “Two-dimensional distributed-phase-reference protocol
for quantum key distribution,” Sci. Rep., vol. 6, no. 1, Dec. 2016, Art.
no. 36756.

[8] X. Wang, W. Liu, P. Wang, and Y. Li, “Experimental study on all-fiber-
based unidimensional continuous-variable quantum key distribution,”
Phys. Rev. A, vol. 95, no. 6, Jun. 2017, Art. no. 062330.

[9] W. Liu, X. Wang, N. Wang, S. Du, and Y. Li, “Imperfect state preparation
in continuous-variable quantum key distribution,” Phys. Rev. A, vol. 96,
no. 4, Oct. 2017, Art. no. 042312.

[10] N. Wang, S. Du, W. Liu, X. Wang, Y. Li, and K. Peng, “Long-distance
continuous-variable quantum key distribution with entangled states,” Phys.
Rev. Appl., vol. 10, no. 6, Dec. 2018, Art. no. 064028.

[11] G. Zhang et al., “An integrated silicon photonic chip platform for
continuous-variable quantum key distribution,” Nature Photon., vol. 13,
no. 12, pp. 839–842, Dec. 2019.

[12] G. Van Assche, J. Cardinal, and N. J. Cerf, “Reconciliation of a quantum-
distributed gaussian key,” IEEE Trans. Inf. Theory, vol. 50, no. 2, pp. 394–
400, Feb. 2004.

[13] P. Jouguet, D. Elkouss, and S. Kunz-Jacques, “High-bit-rate continuous-
variable quantum key distribution,” Phys. Rev. A, vol. 90, no. 4, Oct. 2014,
Art. no. 042329.

[14] Z. Bai, X. Wang, S. Yang, and Y. Li, “High-efficiency gaussian key
reconciliation in continuous variable quantum key distribution,” Sci. China
Phys. Mech. Astron., vol. 59, no. 1, Jan. 2016, Art. no. 614201.

[15] Z. Bai, S. Yang, and Y. Li, “High-efficiency reconciliation for continuous
variable quantum key distribution,” Jpn. J. Appl. Phys., vol. 56, no. 4,
Apr. 2017, Art. no. 044401.

[16] A. Leverrier, R. Alleaume, J. Boutros, G. Zemor, and P. Grangier, “Multi-
dimensional reconciliation for a continuous-variable quantum key distri-
bution,” Phys. Rev. A, vol. 77, no. 4, Apr. 2008, Art. no. 042325.

[17] P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long-distance continuous-
variable quantum key distribution with a Gaussian modulation,” Phys. Rev.
A, vol. 84, no. 6, Dec. 2011, Art. no. 062317.

[18] Q. Li, X. Wen, H. Mao, and X. Wen, “An improved multidimensional rec-
onciliation algorithm for continuous-variable quantum key distribution,”
Quantum Inf. Process., vol. 18, no. 1, Jan. 2019, Art. no. 25.

[19] X.-Q. Jiang, P. Huang, D. Huang, D.-K. Lin, and G.-H. Zeng, “Secret
information reconciliation based on punctured low-density parity-check
codes for continuous-variable quantum key distribution,” Phys. Rev. A,
vol. 95, no. 2, Feb. 2017, Art. no. 022318.

[20] H. Mani, T. Gehring, C. Pacher, and U. L. Andersen, “Reconciliation of
weakly correlated information sources utilizing generalized exit chart,”,
2020, arXiv:1812.05867

[21] X. Wang, Y. Zhang, Z. Li, B. Xu, S. Yu, and H. Guo, “Efficient rate-
adaptive reconciliation for continuous-variable quantum key distribution,”
Quantum Inf. Comput., vol. 17, pp. 1123–1134, Nov. 2017.

[22] M. Milicevic, C. Feng, L. M. Zhang, and P. G. Gulak, “Quasi-cyclic
multi-edge LDPC codes for long-distance quantum cryptography,” NPJ
Quantum Inf., vol. 4, Apr. 2018, Art. no. 21.

[23] S. J. Johnson, A. M. Lance, L. Ong, M. Shirvanimoghaddam, T. C. Ralph,
and T. Symul, “On the problem of non-zero word error rates for fixed-rate
error correction codes in continuous variable quantum key distribution,”
New J. Phys., vol. 19, no. 2, Feb. 2017, Art. no. 023003.

[24] C. Zhou, X. Wang, Y. Zhang, Z. Zhang, S. Yu, and H. Guo, “Continuous-
variable quantum key distribution with rateless reconciliation protocol,”
Phys. Rev. Appl., vol. 12, no. 5, Nov. 2019, Art. no. 054013.

[25] X. Wang, Y. Zhang, S. Yu, and H. Guo, “High speed error correction for
continuous-variable quantum key distribution with multi-edge type LDPC
code,” Sci. Rep., vol. 8, no. 1, Jul. 2018, Art. no. 10543.

[26] H.-F. Zhang et al., “A real-time QKD system based on FPGA,” J. Lightw.
Technol., vol. 30, no. 20, pp. 3226–3234, Oct. 2012.

[27] A. Tanaka et al., “High-speed quantum key distribution system for 1-
Mbps real-time key generation,” IEEE J. Quantum Electron., vol. 48, no. 4,
pp. 542–550, Apr. 2012.

[28] N. Walenta et al., “A fast and versatile quantum key distribution system
with hardware key distillation and wavelength multiplexing,” New J. Phys.,
vol. 16, no. 1, Jan. 2014, Art. no. 013047.

[29] Z. Yuan et al., “10-Mb/s quantum key distribution,” J. Lightw. Technol.,
vol. 36, no. 16, pp. 3427–3433, Aug. 2018.

[30] S.-S. Yang, Z.-L. Bai, X.-Y. Wang, and Y.-M. Li, “FPGA-based implemen-
tation of size-adaptive privacy amplification in quantum key distribution,”
IEEE Photon. J., vol. 9, no. 6, Dec. 2017, Art. no. 7600308.

[31] T. Richardson and R. Urbanke, Modern Coding Theory. New York, NY,
USA: Cambridge Univ. Press, 2008.

[32] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Y. Hu,
“Reduced-complexity decoding of LDPC codes,” IEEE Trans. Commun.,
vol. 53, no. 8, pp. 1288–1299, Aug. 2005.

[33] P. Hailes, L. Xu, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “A
survey of FPGA-based LDPC decoders,” IEEE Commun. Surveys Tut.,
vol. 18, no. 2, pp. 1098–1122, May 2016.

[34] P. Radosavljevic, A. de Baynast, and J. R. Cavallaro, “Optimized message
passing schedules for LDPC decoding,” in Proc. Asilomar Conf. Signals
Syst. Comput., Beijing, China, 2005, pp. 591–595.

[35] A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a
continuous-variable quantum key distribution,” Phys. Rev. A, vol. 81, no.
6, Jun. 2010, Art. no. 062343.

[36] P. Jouguet and S. Kunz-Jacques, “High performance error correction
for quantum key distribution using polar codes,” Quantum Inf. Comput.,
vol. 14, pp. 329–338, Mar. 2014.

[37] “7 series FPGAs overview,” San Jose, CA, USA. 2018. [Online].
Available: https://www.xilinx.com/support/documentation/data_sheets/
ds180_7Series_Overview.pdf

Authorized licensed use limited to: Shanxi University. Downloaded on July 23,2020 at 00:13:33 UTC from IEEE Xplore. Restrictions apply.

https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

